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In large-scale approximation this article investigates the unidimensional process 
of displacement of oil by hot water at high pressures and temperatures, when water 
and oil are partly or fully mutually soluble. 

Displacement of oil by hot water, where the thermal effect is utilized for attaining 
partial or full mutual solubility of water and oil, is a new trend in the development of 
thermal methods of increasing the oil yield of beds [i, 2]. The possibility of effecting 
such a regime of displacement has now been experimentally proved [2]. The main complica- 
tions of its being put into effect are due to the fact that mutual solubility of water and 
oil occurs at high pressures and temperatures. For instance, for degassed oil of the 
Dolinsk deposit with a viscosity of 45 mPa.sec full mutual solubility is attained at a pres- 
sure of 21.6 MPa and a temperature of 338~ [i]. This also determines the object of the 
effect (the bed must lie at a depth of at least 1800 m) and the requirements the equipment 
has to fulfill. Moreover, the mutual solubility of water and oil drops drastically when the 
temperature drops below the critical temperature T C corresponding to full mutual solubility, 
and therefore another complicating circumstance is the heat exchange between the bed and the 
surrounding rocks. 

Below, a hydrodynamic analysis of the mechanism of displacement of oil by hot water with 
partial or full mutual solubility of water and oil is presented [3]. The process is examined 
in large-scale approximation [4]: capillary and nonequilibrium effects and heat conduction 
along the bed are not taken into account so that the heat spreads only by convection, and the 
temperature of the liquids and of the rock coincide at each point [5-7]. The bed is assumed 
to be thin, the heat flux through its roof and floor is proportional to the difference 
between the temperatures of the bed T and of the surrounding rocks To = const, in addition, 
thermal expansion of the liquids and the effect of a change of pressure on the phase equili- 
brium of water and oil are neglected. The solution is plotted by the method of characteris- 
tics [8, 9]. It was established that there exist two regimes of displacement. One of them, 
the pseudopiston regime, is effected at higher temperature T ~ of the hot water pumped into 
the bed; it is characterized by the fact that there is no zone of mixing of water and oil in 
the structure of the displacement front. The second regime is associated with lower temper- 
ature T ~ , and the advance of the thermal front is accompanied by the mixing of water and oil. 
Heat exchange between the bed and the surrounding rocks leads to the transition from the 
first regime of displacement to the second regime, and the temperature of transition T$ is 
lower than T C. This effect is analogous to the known effect in the theory of displacement 
of oil by solvents [i0]. However, in our case T$ is not only determined by the conditions 
of phase equilibrium of water and oil but also by the dependence of the hydrodynamic charac- 
teristics of the flow on the temperature. 

Figure la shows a typical phase diagram of the system water--oil at constant pressure, 
the variables being full volume water content o--temperature T. The binodal curve T = T*(o) 
separates the regions of single-phase A' and two-phase A" states of the system. The inter- 
sections of the family of horizontal nodal curves with the binodal curve determine the volume 
concentrations of water in the aqueous phase w(T) and in the oil phase ~(T) at the given tem- 
perature; C is the critical Point at which w(Tc) = ~(Tc) and dT*/do = 0. Along each nodal 
curve, e.g., T = T~ and ~(T~)~o~(T$) , the compositions of the aqueous and oil phases are 
invariable, and their relative volumes (s and i -- s) are inversely proportional to the 
lengths of the line segments, e.g., DID W and DIDo, into which the mapping point DI = (o, T~) 
divides the nodal curve DpD W. 
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Fig. i. Plotting of the solutions when there is no heat 
exchange: a) in the phase diagram; b) in the auxiliary 
plane (o, G). 

With the above assumptions, the process of displacing oil from a linear bed O~_x~L 
with the cross-sectional area A is described by the equations of the balance of water and 
heat in the flow [4-6]: 

0o OG _ O, 0 0 
O~ + OX ~ - -  tT (~ + b)] + - ~  [T (G + h)l + • (T - -  To) = 0, 

X = m A x / V  m ~ = U t t V ~ ,  V p = m A L ,  O ~ X ~ I ,  (1) 

• = a V v / m A U  (el - -  e~), b = (e2 + edm) / ( r  - -  c~), h = e~/(el - -  e~). 

Here the  d ime n s i on l e s s  v a r i a b l e s  X and r have the meaning of  the volume of  p a r t  of  the bed 
from its inlet section x = 0 and the volume of the liquid pumped in, referred to the pore 
volume of the bed Vp. 

The volume proportion of water in the flow G depends on the phase composition of the 
water--oil mixture. In single-phase and two-phase states we have, respectively: 

G(a, T ) : ~ ,  T ~ T * ( 6 ) ,  (2) 

(s, T) = sw.-k ( 1 - -  s) ~, G(g, T)=Fm+(1--F)~, T<T*(~), 

w =  w ( T ) ,  , = , ( T ) ,  F(s ,  T)  = [II~, (3) 
[11PI + h/P~ ' 

[~ = [i(s ,  T), ~ = ~ (T), 

where F ( s ,  T) i s  the p r o p o r t i o n  of  aqueous phase in  the f low.  

We seek the s o l u t i o n  of  the  system ( 1 ) - ( 3 )  wi th  the i n i t i a l  and boundary c o n d i t i o n s  

" ~=~o, T=To(~=O,X>O); ~ = 1 ,  T=T~ (4) 

We put the points D and D ~ on the phase diagram in the plane (o, T) in correspondence 
with the values of (Oo, To) and (i, T~ We will assume that T ~ > T*(1), To < T*(oo), 
w(To) = i, ~(T0) = 0, i.e., that the points D ~ and Do are situated in the regions A' and A", 
respectively, and that at the initial temperature of the bed To, water and oil are mutually 
insoluble; the magnitude of Oo coincides with the initial water saturation of the bed. 

The solution of the problem (1)-(4) o(x, T), T(x, T) is found efficiently by the method 
of characteristics. It is constructed from the final set of elements containing the sections 
of continuous change of the variables and their jumps (discontinuities). The sections of 
continuity of o and T may belong to four types: i) o = i, DT/DX ~ 0 for T > T*(1) (for the 
sake of brevity these sections will henceforth be called Ti-waves); 2) g = const, T = To; 3) 
3o/3X # 0, T = To (o-waves); 4) ~o/3X # 0, ~T/3X ~.~ 0 for T < T* (o) (Tll-waves). 

Jumps may belong to one of three types: i) jumps of o and T with transition of single- 
phase flow into two-phase flow (denoted henceforth as J~2); 2) jumps of o and T in two-phase 
flow (T-jumps); 3) jumps of o for T = To (o-jumps). 
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Fig. 2. Distributions of water content ~ and of 
temperature T in the flow: a) in pseudopiston dis- 
placement; b) upon formation of a mixing zone. 

On sections of continuity the system (1)-(3) is written in characteristic form [ii]" 

dX da G r ' ( d T  T T o )  
dr --~I=6~' ---- -- (5) 

dX ~ _ __G + h dT ,• ----.T -- To (6)  

d~ a + b  ' dT a + b  

In the jumps the integral laws of conservation have to be fulfilled" 

~j [o] = [Gl, ~i IT (~ + b)] = IT (6 + h)], 

[[l = [+ - -  f - ,  r e ( X ,  T ) = f ( X j •  T), ~ = d X ~ / d x ,  

w h e r e  Xj and  ~j a r e  d i m e n s i o n l e s s  c o o r d i n a t e s  and  s p e e d s  o f  t h e  j u m p .  I n  a d d i t i o n ,  i n  t h e  
c o n s t r u c t i o n  o f  t h e  j umps  a d d i t i o n a l ,  c o n d i t i o n s  o f  s t a b i l i t y  [11 ,  12] a r e  u s e d .  I n  o u r  c a s e  
t h e  u n i q u e  s o l u t i o n  i s  s i n g l e d  o u t  by  t h e  c o n d i t i o n  t h a t  t h e  number  o f  c h a r a c t e r i s t i c s  p e r  
line of the jump X = Xj(T) (whose characteristic speeds satisfy the inequalities ~ 5 ,  

~gj , i, k = i, 2), be equal to three -- analogously to the condition of evolution used in 
the theory of shock waves [ii]. 

In constructing the solution, we first find its mapping into the auxiliary plane (~, G), 
and in particular, to the distributions o(X, T) and T(X, T) at each instant T we put in cor- 
respondence some curve G-----~(o,~) called the "path" [4, 6] such that ~(~,~)----- G(~(X, T), 
T(X, T))for 0 ~ X < ~. Here the sections of continuity of ~ and T are mapped into piece- 
wise smooth arcs of the curve ~(~,~), the sections of constancy of a and T into corner 
points, and jumps are represented by straight-line segments. Thus the path is a continuous 
curve connecting the points D ~ = (i, G(I, TO)) and Do = (~o, G(oo, To)) of the plane (o, G). 
On account of (5)-(7) the characteristic speeds ~, ~2 and the speeds of the jumps ~j permit 
lucid graphic interpretation in the plane (~, G) [6, 7]. Thus, ~(~, T) coincides with the 
slope of the tangent to the curve G(o, T), $2(o, T) with the slope of the secant passing 
through the point P = (--b, --h) and called henceforth T-ray; analogously, the speed of the 
a-jump ~j is equal to the slope of the straight line connecting the points (~+, G(o +, T)) and 
(a-, G(o-, T)), and the speed of the T-jump is equal to the slope of the T-ray passing 
through the point (o • G(~ • T• The principal property of the path is that the constant 
values of o are transferred in the flow at the speeds dX/dT, coinciding at each instant T 
with the slopes of the path ~(a)=d~(a,~)/d~ in the plane (~, G). 

An advantage of the given method of constructing the solution is that the evolution of 
the path in time, and consequently also the structure of the solution, are fully established 
by elementary graphoanalytical means before the solution itself is constructed, after which 
the procedure of restoring the distributions ~(X, T) and T(X, T) in the flow is carried out 
automatically. Together with the path G-----~(a,T) it is expedient to construct simultaneously 
the mapping of the solution into the plane (o, T) of the phase diagram, placing it above the 
(o, G)-diagram (this circumstance was pointed out by P. G. Bedrikovetskii). Together with 
additional lucidity, such a method makes it possible to ascertain the temperatures T expended 
in mapping the Ti-waves into the plane (o, G) because the latter are mapped into points of 
the straight line ~ = G, independently of the values of T. 

Let us first examine the principal solutions when there are no heat losses into the 
surrounding rocks (• In this case the solution of the problem (1)-(4) is self-similar" 
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Fig. 3. Construction of the solutions taking heat exchange 
into account: a) in the phase diagram; b) in the auxiliary 
plane (o, G). 

o = ~(~), T = T(~), ~ = X/T, So that the path ~' in the plane (o, G) and in the phase dia- 
gram does not depend on the time, and ~ = B(o) = d.~(o)/do. Moreover, sections of type TII- 
waves are impermissible, and on Ti-waves T = const. Figure 2 shows the distributions of 
o(~) and T(~), and Fig. 1 shows the paths in the plane (o, G) and in the plane (o, T) for 
the two principal types of solution corresponding to the case of complete displacement of 
residual oil (when the initial water saturation of the bed is high). To the solution of the 
first type (Fig. 2a) corresponds to path D?D4Do, to the solution of the second type (Fig. 
2b) the path D~DID2D3Do. In the solution of the first type the jump J~2 occurs along the 
T-ray passing through the point D~, and in the solution of the second type it corresponds to 
the line segment D~DI of the straight line touching the curve G(o, T~) at the point DI; here 
the T-jump is represented by the segment of the T-ray touching the curve G(o, T~) at the 
point D2. The remaining constructions are carried out in the known manner [4, 6]. Other 
self-similar solutions of both types and their constructions were dealt with in [3]. The 
solution of first type corresponds to the pseudopiston regime of displacement: the thermal 
front moves at the speed ~i = (i + h)/(l + b) < 1 (lower than the pumping speed), completely 
displacing the oil contained in the bed. As a result, a zone of increased oil content in 
the flow forms in the structure of the displacement front: the oil swell (D4D4 in Fig. 2a). 
When the temperature of the water that is forced in is lower (T~ < T~), a regime of displace- 
ment obtains, involving the formation of a zone of mixing of water and oil at T = T~ (D,D2 
in Fig. 2b) in front of the zone of hot water (D~D~) from which the oil is displaced com- 
pletely. In this case the oil swell has a more complex structure. The temperature of tran- 
sition from the first to the second regime, T ~ may be given the following graphic interpre- 
tation in the plane (~, G): with T ~ o = T, the curve G(o, T ~ ) touches the T-ray PD ~ (Fig. 3). 
From the constructions in Figs. 1 and 3 it is clear that T~ < TC, i.e., the temperature of 
transition to the pseudopiston regime of displacement is lower than the temperature of full 

o mutual solubility of water and oil. When T ~ > T,, hot water is an "ideal" solvent, and the 
process of displacement does not depend on the temperature T ~ . This result is analogous to 
the known result for processes of displacement of oil by hydrocarbonaceous gas [13, 14] where 
the piston regime of displacement may be put into effect with incomplete mutual solubility 
of the displacing and the displaced liquids. However, whereas in displacement of oil by 
hydrocarbonaceous gases the compositions of the ideal displacing agents are determined 
exclusively by the conditions of phase equilibrium, in our case the temperature of transi- 
tion to the pseudopiston regime of displacement is determined by the dependence of the hydro- 
dynamic characteristics of the flow on the temperature, i.e., by the form of the function 
G(o, T). 

Let us now examine the effect of heat exchange on the structure of the displacement 
O front. We will assume that the temperature of the pumped-in water is T ~ > T,, and that the 

initial water saturation of the bed Go is low (Fig. 3a). Since the rate of heat exchange is 
finite, the structure of the displacement front at the initial instant coincides with the 
structure of the self-similar solution for ~=0 . The corresponding path in the plane (~, 
G) has the shape of the curve D~ As the thermal front X = X~(T) moves along, the tem- 
perature behind it drops, however, as long as the temperature on the front T%(T) ~ T ~ its 
change does not affect the distribution of the water content o. When X ~ X~(T) 
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Structure of the displacement front in 
case of heat exchange: a) trajectory of the 
jumps and characteristics of the first family; b) 
distributions of water content o and of tempera- 
ture T in the flow. 

X I ( J =  l + b  r T (X ,  " 0 = T o + (  T ~  exp l + h  ' ' 

TF(T) = T(X,, ~), (8)  

i . e . ,  t h e  t e m p e r a t u r e  a t  e a c h  p o i n t  o f  t h e  h e a t e d  zone  o f  t h e  bed  d e p e n d s  s o l e l y  on t h e  c o o r -  
d i n a t e  and  n o t  on  t i m e .  E q u a l i t y  T T ( r )  = T ~ i s  a t t a i n e d  w i t h  T = T1 = - - ( 1  + b ) l n [ ( T ,  ~ - -  
To)/(T ~ -- To)]/ Further drop of the temperature on the thermal front leads to the forma- 
tion of a two-phase zone of mixing of water and oil, the corresponding path assumes the shape 
of the curve D~ in the plane (o, G) and of the curve D~176 in the plane 
(~, T) (Fig. 3). We denote the boundaries of the mixing zone X2(T) and X3(T) (Xz < X3) and 
the boundary values of T and o in it T+(T), O+2(T) and TT(T), 07(T). When X = X2(T), the dis- 
continuity applies only to the water content o, and when X = X3(T), to 0 and T simultaneously~ 
The movement of the fronts X2(T) and X3(T) for T > T~ is described by the equations 

dX2 %1 (o+ ,  T +) G ((~+, T +)  - -  I d T  + r + - -  V o . . . .  • �9 (9) 

dT o2 + - -  1 ' d'r o2 + ~- b '  

__ T~- -- To dX~ _ ~1(a7, T7 ) = ~2(aa ' TT), dT7 • . (10)  
dT dT a 7  + b ' 

X2 (T1) = X8 (T1) = Xl  (T1), T~ (T1) = T 7 (Ti) = T~, 

which are integrated by separating the variables [3]. As a result we find the laws of 
motion of the jumps in parametric form: 

X:=X~(T~) ,  T = T ( T ~ ) ;  X3=X3(TT), T = T ( T T ) ,  (11)  

where T~ changes from T ~ to T*(1), and T~ from T ~ , to O. 

On account of (9) the value T~ = T*(1) is attained within finite time (~I~T~T2) . From 
the region O<~X<~X2(z2) the oil is completely displaced. When T > T2, the o-jump is not 
moving, and in the mixing zone the oil does not dissolve in water. At this stage of dis- 
placement, more complete extraction of oil depends on reduction of its viscosity at higher 
temperatures. The values of o and T in the mixing zone are efficiently found by numerical 
integration of the equations of the characteristics with the aid of the ordinary finite-dif- 
ference corner schema. Thanks to the explicit separation of the jumps, the segment X2(~)~ 
X~Xa(~ ) is preliminarily normalized, and this makes it possible to ascertain the volume 
step of a uniform network, and to choose the step in time in accordance with the condition of 
stability of the schema [8]. 

The influence of heat losses on the structure of the forward zone of displacement 
X > X3(T), not thermally affected, manifests itself in increased speed of propagation (begin- 
ning at some instant T = T3) of the front of cold water (of the o-jump). Let o[(T) be the 
water content on the front, then (see Fig. 3) with 

G (~, To) -- G (m), ToY 
W (~) = ~ '  x~ (~) = ~, 
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o~(~, To)--(1 + h)/(1 +b) 
~ = " 6,~ ( %  7 " o ) - -  X,, ('0/'~ 

> TI. (12) 

With T > T3 X4(T) and o[(T) we find in the quadratures from the relations 

dX___~ G(GT, T o ) - - G ( a o ,  To) , X a ( x ) - - X s ( ~ )  :=~(~,  To), (13) 
d~ G~ -- ~o T -- T 1 

with a view to (12)~ here, o~ is the water content ahead of the mixing zone. 

In the zone X3(T) < X < X4(T) the temperature is constant (T = To), and therefore in 
accordance with (5) the constant values of o are transferred along the characteristic dX/dT = 
~i(o, To). The trajectories of the jumps and characteristics of this family in the plane 
(X, T) are shown in Fig. 4a~ in Fig. 4b the distributions of o and T for T3 < T < Ta are 
plotted. Other examples of solutions corresponding to the entire range of values of oo were 
dealt with in [3]. 

NOTATION 

x, coordinate; t, time; T, local temperature of the bed~ To, initial temperature of the 
bed and the surrounding rocks; T ~ , temperature of the pumped-in water; s, saturation of the 
aqueous phase; F, proportion of aqueous phase in the flow~ a, water content~ G, proportion 
of water in the flow; w, ~, volume contents of water in the aqueous and oil phases, respec- 
tively; fl, f2, relative phase permeabilities for aqueous and oil phases, respectively; ~i, 
~2, viscosities of the aqueous and oil phases, respectively~ ci, c2, c3, heat capacities of 
water, oil, and rock, respectively; m, porosity~ V, volume flow rate; ~, heat-transfer coef- 
ficient of the bed with the surrounding rocks per unit volume of the bed; T = T*(o), binodal 
curve of the phase diagram; Tc, temperature of full mutual solubility of water and oil~ X, 
T, dimensionless coordinate and time, respectively; ~i, dimensionless characteristic speeds; 
~j, dimensionless speed of the jump. 
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HELICAL FLOW OF A NONLINEARLY VISCOPLASTIC 

LIQUID IN AN ANNULAR CHANNEL 

Yu. A. Bukhman, V. N. Zadvornykh, 
A. I. Litvinov, and Z. P. Shul'man 

UDC 532.5421532.135 

This article presents analytical expressions describing the flow of a generalized 
nonlinearly viscoplastic liquid in a concentric annular channel under complex 
shear. The results of numerical calculations are analyzed. 

The theoretical and experimental investigation of helical flow in pipes was dealt with 
by many authors of whom we mention [1-5]. Rivlin [i], e.g., obtained some general relations 
for the helical flow of a generalized non-Newtonian liquid in an annular channel. The experi- 
mental verification of the generalized regularity of flow under conditions of complex shear 
was carried out by Vinogradov et al. [2]. Coleman et al. [3] obtained general relations for 
the distribution of longitudinal and angular velocities in a channel and the flow rate of a 
generalized non-Newtonian liquid. However, numerical calculations with their aid were car- 
ried out for the first time by Prokunin et al. [4] for an exponential liquid. All these 
authors dealt with liquids that do not have a limit shear stress. As far as the few existing 
investigations dealt with viscoplastic liquids, only the qualitative aspect of the problem 
was studied, and this does not make it possible to carry out numerical calculations and their 
corresponding analysis. For instance, Myasnikov [5] obtained a phase diagram expressing 
qualitatively the nature of profiles of longitudinal and angular velocity of the helical 
flow of a Bingham--Shvedov liquid. The present authors obtained a closed system of equations 
in dimensionless form enabling them to calculate the principal characteristics of the helical 
flow of a nonlinearly viscoplastic liquid in an annular channel, both for the normal and the 
inverse hydraulic problem. 

We examine laminar steady-state flow in a concentric annular channel formed by two long 
cylinders with radii a and b (a < b), with constant pressure gradient --P = --Ap/~, acting 
along the cylinder axis z. The inner cylinder rotates at constant angular velocity ~o. As 
rheological model we use the generalized model of Shul'man which is adequate for the rheo- 
logical behavior of various paint and varnish compositions, pulps, foodstuffs, cement and 
clay suspensions, and a number of other non-Newtonian media: 

T is the tangential stress intensity, 

~=0, ~<~o- (1) 

= + (2 )  

~ V ( ~ ) =  + (r = . ( 3 )  

Expressions (1)-(3) are written with a view to the axisymmetric nature of the helical 
flow. For the stress components Trz and Tr0 the following relations ensuing from the equa- 
tions of equilibrium of an element of the liquid [I] are correct: 
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